DEV TEAM

Senior & Junior developer working together

Fast Lane Group
Worldwide Education & Professional Services

=fast Lane

PROMPT COMPLEXITY

These prompts are designed for experienced developers who have a strong understanding
of programming concepts, languages, and tools. The tasks in these prompts are more
SENIOR complex and may involve advanced features of a language or framework. They require a
DEVELOPER higher level of problem-solving skills and a deep understanding of software development
principles. These prompts can include building complex systems, optimizing code,
integrating multiple technologies, and more.

These prompts are designed for beginners or those with less experience in programming.

They are less complex and focus on basic programming concepts, introducing new
JUNIOR developers to the fundamentals of a language or framework. These prompts can involve
DEVELOPER tasks like writing simple functions, understanding and fixing bugs, or learning to use basic

features of a language or tool. They provide a supportive environment for learning and
growth, helping new developers to build their skills and confidence.

=fast Lane

TARGET APP — USER STORY

Our system works like a virtual store manager. It keeps a list of all your products, just like a catalog. You can add new
products to this catalog, just like placing a new item on a store shelf. When you add a new product, you can include all
the information a customer might want to know - like what the product is called, what it looks like, how much it costs,
what category it falls under, and more.

If you need to update information about a product - maybe the price has changed, or you've got a new photo to show
- you can do that, too. It's like updating the product's tag on the store shelf. And if a product is no longer available, you
can remove it from the catalog, just like taking it off the shelf.

The system also helps you keep track of which products are in stock. If a product is running low or is out of stock, the
system can let you know so you can restock it.

The system can also handle customer reviews and ratings for your products. It's like having a bulletin board in your
store where customers can leave their feedback.

The best part is that our system is designed to grow with the business. As you add more types of products or need to
include more information about your products, the system can handle it.

EXAMPLE 1:

NET Application in Visual Studio 2022

TARGET APPLICATION — ~Fast Lane
TECH STACK SELECTED

 Visual Studio 2022 (VS 2022): This is a powerful Integrated Development Environment (IDE) by
Microsoft that supports various programming languages. It is used to write, debtég, and test code.
It provides various tools and features to facilifate efficient and effective software development.

« .NET 8: This is a free, open-source, cross-platform framework for building modern applications. It
provides tools to build web, cloud, 10T, and desktop applications. For your web API, .NET 8 offers
ASP.NET, a robust framework for building web apps and services, HTTP services, and more.

 Entity Framework Core: This is a lightweight, extensible, oPen—sourc_e, and cross-platform version
of the popular Entity Framework data acCess technology. It is an Object-Relational Mapping (ORM)
framework that simplifies data access by Iettln? developers work with relational data using

domain-specific objects, eliminating the need Tor most data access plumbing code.

« NUnit: This is a unit-testing framework for all .NET languages. It is used to write and execute tests
to ensure that individual units of source code (like functions, methods, classes, etc.) are working
correctly. This helps catch any bugs or errors early in the development cycle, making the code
more reliable and robust.

=fast Lane

a X
Create a new prDJECt Search for templates (Alt+5) p|'| Clear all
Recent project templates = S W i N
- ASP.NET Core Web App bt
&l (Model-View-Cantroller) A project template for creating a Blazor web app that supports both server-side
rendering and client interactivity. This template can be used for web apps with rich
.)) dynamic user interfaces (Uls).
G MUnit Test Project
C# Linux macOs Windows Blazor Cloud Web
Azure Functions mmCH ASPMET Core Web App (Razor Pages)
- J A project template for creating an ASP.MET Core application with example ASP.NET
[Fe| ASP.NET Core Web AP Core Razor Pages content
- C# Linux macs Windows Cloud service Web
@ Class Library
@ ASP.MET Core Web AP
Bi Console App A project template for creating a RESTRul Web API using ASP.NET Core controllers ar

minirmal APls, with optional support for OpenAPl and authentication,

C# Linux macCs Windows AP Cloud Service Web
Web API

Blazor Server App

@
&1 Blank Selution @ ASP.NET Core Web API (native AQT)

A project template for creating a RESTFul Web API using ASP.MET Core minimal APls

Console App (NET published as native AOT,

Framework)

c# Linux macOs Windows AP| Cloud Service Web

lace | tkrare F BIET

=fast Lane

Configure your new project

ASP.NET Core Web API c# Linux macOs Windows AP Cloud Service Web Web API

Project name

| WebApi |

Location

|C:\Demos\ '| | |

Solution

CONFIGURE |

Selution name (i)

| WebApi |

D Place selution and project in the same directory

Project will be created in "C:ADemos\WebApi\WebApi\"

Back | | Mext

=fast Lane

Additional information

ASP.NET Core Webh API c# Linux mac0s Windows AP Cloud Service Web Web API

Framewoark (1)

| NET 8.0 (Long Term Support) v|

Authentication type (@)

| MNone v|

Configure for HTTPS (@)

CONFIGURE o

Enable OpenAPl support (3
|:| Do not use top-level statements (@)

Use controllers ()

Back ‘ ‘ Create

Fast Lane

START THE
ROMPTING —

ROMPT 1 | need to create a database containing information about
products. | want to use Entity Framework Core.

Can you remind me what are the steps and best practices to
SENIOR do it?
DEVELOPER

| need to create a database containing information about products. | want to use Entity Framework Core. Can you remind me what are the stepsand best
practices to do it?

-

-

@ GitHub Copilot

=fast Lane

@) GitHub Copilot

Sure, here are the steps and best practicesto create a database using Entity Framework Core:

1. Install Entity Framework Core: You can install it via NuGet package manager. The main package you need is Microsoft. EntityFrameworkCore. If you're using
SQL Server, you'll also need Microsoft.EntityFrameworkCore.SqlServer.

2. Create Your Model: This is a class that represents the data you want to store. For example, aProduct class might have properties like Id, Name, Description,
and Price.

R ES U I_T public class Product
{

public int Id { get; set; }

public string Name { get; set; }
public string Description { get; set; }
public decimal Price { get; set: }

| L || Insert in new file || Preview | L B

=fast Lane

3. Create Your DbContext: This is a class that manages the interaction between your models and the database. It includes DbSet propertiesfor each type of
entity you're working with.

public class ProductContext : DbContext

1
R ES U I_T - public DbSet<Product> Products { get; set; }
CO NTI N U E D protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
i

optionsBuilder.UseSqlServer(@"Server=(localdb)\mssqllocaldb;Database=MyDatabas
}

}

4 »

1] Insert in new file Preview 01
=N |

=fast Lane

4. Migrations: Migrations are a way to keep your database schema in sync with your model classes. You can create a migration with the Add-Migration
command in the Package Manager Console, and then apply it with the Update-Database command.
— 5. CRUD Operations: You can now perform Create, Read, Update, and Delete operations on your Product entities using the Product Context.
Here are some best practices:

¢+ Separation of Concerns: Keep your DbContext and domain modelsin a separate project or at least separate folders.
+ Avoid Lazy Loading: Lazy loading can lead to performance issues. Use eager loading with Include method or explicit loading instead.

+ Use Migrations for Schema Changes: Always use migrations to apply schema changesto your database.
+ Don't Share DbContext Instances: DbContext is not thread-safe. Always create a new instance when you need one.
+ Use Dependency Injection: This allows you to manage DbContext lifetime and configuration in a centralized place.

=fast Lane

PROMPT 2 - What are commands for Nuget package installation for these two
ackages? I'm using package manager console.
NSTALL Packag 9 package manag

REFERENCES

what are commands for Muget package installation for these two packages? i'm using package manager console.

@ GitHub Copilot

J U N |O R ‘You can install the required packages using the following commands in the Package Manager Console:

D EVE LO P E R For Microsoft EntityFrameworkCore:

Install-Package Microsoft.EntityFrameworkCore

Preview

For Microsoft EntityFramework Core.SqlS erver:

Install-Package Microsoft.EntityFrameworkCore.SqlServer

These commands will install the latest stable versions of the packages. If you need a specific version, you can specify it using the -Version parameter, like so:

Install-Package Microsoft.EntityFrameworkCore -Version 5.0.0 -

Preview

=fast Lane

PROMPT 3 - FIX
The errors you're seeing are because the necessary namespacesfor DbContext, DbSet <>, and DbContext OptionsBuilder are not included in your file.
These classes are part of the Microsoft.EntityFrameworkCore namespace.

C O M M ﬁ N D You can fix these errors by adding the following line at the top of your file:

using Microsoft.EntityFrameworkCore;

Preview

So your updated Product Context.cs file should look like this:

JUNIOR
DEVELOPER

using Microsoft.EntityFrameworkCore;

public class ProductContext : DbContext

{ public DbSet<Product> Products { get; set; }
protected override void OnConfiguring(DbContextOptionsBuilder optionsBui -
{ optionsBuilder.UseSqlServer(@"Server=(localdb)\mssqllocaldb;Database

) ¥

PROMPT 5

SENIOR
DEVELOPER

=fast Lane

For my local development | don't want to use actual sql server for db,
rather | would like to use In memory database. Can you update my
Program.cs class. Only use this in memory database for development
environment. For other environments use sql server.

For my local development i don't want to use actual sgl server for db, rather iwould like to use In memory database. Can you update my Program.cs
class. Only use this in memory database for development environment. For other environments use sql server.

® citHub Copilot

Sure, you can use the IsDevelopment method to check if the current environment is development. If it is, you can add the in-memory database service;
otherwise, add the SQL Server service. Here's how you can do it:

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.
builder.Services.AddControllers();
builder.Services.AddEndpointsApiExplorer();
builder.Services.AddSwaggerGen();

if (builder.Environment.IsDevelopment())

{
builder.Services.AddDbContext<ProductContext>(options => -
options.UseInMemoryDatabase("MyDatabase"));
}
else
{

builder.Services.AddDbContext<ProductContext>(options =>
options.UseSglServer(builder.Configuration.GetConnectionString("MyDataba

-1 fix L

=fast Lane

USING /FIX
COMMAND /fix - Propose a fix for problems in the selected code

Helpful Resources

About GitHub Copilot Chat
Getting Started with GitHub Copilot Chat

Video Tuterial - GitHub Copilot Chat
Code Refinement and Debugging with Copilot Chat

[} References i

Al suggestions might be inaccurate.

PROMPT 6-
FIX ERRORS

JUNIOR
DEVELOPER

=fast Lane

Hix

@) GitHub Copilot

The error message isindicating that the UselniMemoryDatabase extension method is not available. This method is part of the
Microsoft.EntityFramework Core.InfMemory namespace, which is provided by the Microsoft EntityFrameworkCore.lnMemory MuGet package.

First, you need to install the Microsoft EntityFrameworkCaore.IniMemory package. You can do this via the Package Manager Console with the following
command:

Install-Package Microsoft.EntityFrameworkCore.InMemory

Preview

Then, you need to add the following using directive at the top of your Program.cs file:

using Microsoft.EntityFrameworkCore;

Preview

So, your updated Program.cs file should look like this:

using Microsoft.EntityFrameworkCore;

var builder = WebApplication.CreateBuilder(args); -

// Add services to the container.
builder.Services.AddControllers();

builder.Services.AddEndpointsApiExplorer();

PROMPT 7

SENIOR
DEVELOPER

Fast Lane

When developing local and using InMemory database i need
some mock objects for my products. Can you, according to the
best practice, generate me initialization logic for my local
development. In memory database should contain 20 mocked
product entities. #file:'Program.cs' #file:'ProductContext.cs’

=fast Lane

When developing local and using InMemory database i need some mock objects for my products. Can you, according to the best practice, generate me initialisation logic for my local

development. In memory database should contain 20 mocked product entities. €% Programcs ©% Product Context.cs

@ GitHub Copilot

Sure, you can seed your in-memory database with mock data by adding a database initializer. This initializer can check if the environment is development and if so, add the mock data. Here's
how you can do it:

First, modify your ProductContext class to take DbContextOptions in its constructon

public class ProductContext : DbContext

7 {
P R O M PT — public ProductContext(DbContextOptions<ProductContext> options) : base(options) { }

public DbSet<Product> Products { get; set; }

RESULT : »

| Insert in new file || Preview |

Then, in your Program cs, after the app.Run(); line, add the following code:

if (app.Environment.IsDevelopment())
{ using (var scope = app.Services.CreateScope())
{ var context = scope.ServiceProvider.GetRequiredService<ProductContext>();
if (!context.Products.Any())
k for (int i = 1; i <= 20; i++)
£

Al suggestions might be inaccurate.

=fast Lane

D
ROMPT 8 — In the future | would like to be able to easily change my db

REPOSITORY connection implementation. Can you generate repository pattern
implementation around my dbContext so that | can access

PATTERN product list over interface, rather than directly.

S EN I O R In the future | would like to be able to easily change my db connection implementation. Can you generate repository pattem
D EVELO P ER implementation around my dbContext so that i can access product list over interface, rather than directly.

@ GitHub Copilot

Sure, you can use the Repository pattern to abstract away the details of accessing data from your DbContext. Here'show you can do it:

First, create an interface for your repository:

public interface IProductRepository

1

Task<IEnumerable<Product>> GetProductsAsync();
// Add other methods as needed, like GetById, Add, Update, Delete, etc. -

}

4 .4

| [P || Insert in new file || Preview |

Then, create a class that implements this interface:

public class ProductRepository : IProductRepository
{
private readonly ProductContext _context;
public ProductRepository(ProductContext context)
i
_context = context;
¥
public async Task<IEnumerable<Product>> GetProductsAsync()
i
return await _context.Products.ToListAsync();
¥
// Implement other methods as needed
h
4 [
| [F H Insert in new file || Preview |
In your Program.cs, register your repository with the DI containen
builder.Services.AddScoped<IProductRepository, ProductRepository=();
4 .3
| my H Preview |

Mow, you can inject IProductRepository into your controllers or other services, and use it to accessyour products. This way, the rest of your
application doesn't need to know about DbContext or Entity Framework, which makes it easier to change your database connection in the future.

=fast Lane

PROMPT 9 —

CONTROLLER +

/FIX

SENIOR
DEVELOPER

Fast Lane

Can you generate a controller code for my Products. | need usual
CRUD methods implemented, and calling my IProductRepository
object. Concrete instance would be provided via constructor
injection. Include proper using statements and namespace used in
application.

/Tix with references to ProcuctsController, IProductRepository and
ProductRepository

=fast Lane

Can you generate a controller code for my Products. | need usual CRUD methods implemented, and calling my IProductRepository object.
Concrete instance woudl be provided via constructor injection.

@ aitHub Copilot

Sure, here's a basicimplementation of a ProductsController that uses IProductRepository:

[ApiController]
[Route(" [controller]")]
public class ProductsController : ControllerBase

1

private readonly IProductRepository _productRepository;

public ProductsController(IProductRepository productRepository)

{
_productRepository = productRepository;
¥
[HttpGet]
public async Task<IEnumerable<Product>> Get()
{
return await _productRepository.GetProductsAsync();
¥

[HttpGet("{id}")]
public async Task<ActionResult<Product>> Get(int id)

{

- - . — N . _ o - um

Al suggestions might be inaccura

=fast Lane

ffix € ProductsController.cs €® |ProductRepository.cs € ProductRepository.cs

@ GitHub Copilot

The errorsyou're seeing are because the IProductRepository interface and the ProductRepository class do not have the methods that are being
called in the ProductsCaontroller.

Let's add the missing methodsto the IProductRepository interface and implement them in the ProductRepository class.

Here'sthe updated IProductRepository interface:

public interface IProductRepository

1
Task<IEnumerable<Product>> GetProductsAsync();
Task<Product> GetProductByIdAsync(int id);
Task AddProductAsync(Product product):;
Task UpdateProductAsync(Product product);
Task DeleteProductAsync(Product product);

¥

ﬂ Insert in new file Preview

=fast Lane

And here's the updated ProductRepository class:

public class ProductRepository : IProductRepository

{

private readonly ProductContext _context;

public ProductRepository(ProductContext context)

i
_context = context;
h
public async Task<IEnumerable<Product>> GetProductsAsync()
i
return await _context.Products.TolListAsync();
¥

public async Task<Product> GetProductByIdAsync(int id)
i

return await _context.Products.FindAsync(id);

}

=fast Lane

For the nullability error, you can change the return type of the Get method to Task<ActionResult <Product = » to match the nullable return type of
GetProductByldAsync. Here'sthe updated method:

[HttpGet("{id}")]
public async Task<ActionResult<Product>> Get(int id)
1
var product = await _productRepository.GetProductByIdAsync(id):
if (product == null)
i
return NotFound();
¥
return product;
3
4 [4
H Preview

Fast Lane

PROMPT 10 - Can you analyze why my mocked products from #file:'Program.cs'
"X PRODUCTS lines 40 to 60 are not showing?
Also break point on line 40 (if (app.Environment.IsDevelopment()))

NOT SHOWING is never reached?

@ GitHub Copilot

J U N |O R The issue isdue to the placement of your code block for seeding the in-memory database. The app.Run(); method starts

DEVELOPER the web application and blocks the calling thread until the host shuts down. This meansthat any code after app Run(); will
not be executed until the application is shutting down.

To fix this, you should move your database seeding code to a place before app Run();. Here's how you can do it:

var app = builder.Build();

// Configure the HTTP request pipeline.

if (app.Environment.IsDevelopment())

1 IIIII
app.UseSwagger();
app.UseSwaggerUI();

e [S S S S e

Fast Lane

PROMPT 11 = CUSTOMER REQUEST

JUNIOR
DEVELOPER

Can you update #Product.cs with info from customer request:

"Here are some specifications regarding the properties | would like to input for my products and the types of products | want to sell:
Properties for Products: Product Name: A clear and descriptive name that instantly identifies what the product is. Product Description:
Detailed information about the product, including its features, usage, benefits, and any other relevant information. Product Category: The
category or department the product belongs to (e.g., Electronics, Home and Kitchen, Apparel, etc.). Product Sub-category: A more specific
classification within the main category (e.g., under Electronics, there could be Mobiles, Laptops, etc.). Product Price: The price of the product.
There should be fields for both regular and sale prices. Product Images: High-quality images from different angles. There should be an option
to zoom and view the product in a 360-degree view. Product Videos: Short clips demonstrating the product, if applicable. SKU (Stock Keeping
Unit): Unique identifier that helps to manage the inventory. Stock Status: Information about the availability of the product (In Stock, Out of
Stock, Limited Stock). Product Weight and Dimensions: Important for calculating shipping costs. Product Variants: Different variations like size,
color, material, etc. Product Reviews and Ratings: Allow customers to leave feedback and rate products. Related Products: Suggestions for
other products that customers might be interested in. SEO Fields: For meta title, meta description, and keywords to help in search engine
optimization. Types of Products: Physical Products: These are tangible items such as clothes, electronics, furniture, etc. Digital Products: These
are intangible items like ebooks, music, digital art, software, etc. Services: These include services like consulting, coaching, online courses, etc.
Subscription-based Products: Products that require regular renewal like magazines, memberships, etc. Bundle Products: A combination of
related products sold as a package. Customizable Products: Products that can be personalized based on customer preferences. | would like
the platform to be flexible, allowing for additional product types and properties as the business grows and evolves."

Also update #Program.cs initialization of mocked products.

PROMPT 11 -
RESULT

@) citHub Copilot

Based on the customer's request, here's an updated version of your Product class:

=fast Lane

public class Product

{
public int Id { get; set; }
public string Name { get; set; }
public string Description { get; set; }
public string Category { get; set; }
public string SubCategory { get; set; }
public decimal RegularPrice { get; set; }
public decimal? SalePrice { get; set; }
public string ImageUrl { get; set; }
public string VideoUrl { get; set; }
public string SKU { get: set:; }
public string StockStatus { get; set; }
public decimal Weight { get; set; }
public string Dimensions { get: set; }
public string Variants { get; set; }

=fast Lane

And here's how you can update the initialization of mocked productsin Program.cs:

if (app.Environment.IsDevelopment())

{

using (var scope = app.Services.CreateScope())

i
var context = scope.ServiceProvider.GetRequiredService
if (!context.Products.Any())
1

PROMPT]] — ‘;“1‘ (int i = 1; i <= 20; i++)

context.Products.Add(new Product
RESULT {

Id = 1,
Name = $"Product {i}",

Description = $"This is product {i}",
Category = "Electronics",

SubCategory = "Mobiles",

RegularPrice = i = 10,

SalePrice = i % 9,

ImageUrl = $"https://example.com/images/pr
VideoUrl = $"https://example.com/videos/pr
SKU = $"SKU{i}",

ChmamliChmdtiim = HTmwm Cha~lN

PROMPT 12 -
ADVANCED
FILTERING + /FIX

SENIOR
DEVELOPER

Fast Lane

| want to implement filtering in my ProductsController GET method. The
following examples illustrate how i want it to work and the use and
semantics of each of the logical operators.

Example: all products with a name equal to '‘Milk'

GET https://api.contoso.com/products?filter=name eq 'Milk' Example: all
products with a name not equal to 'Milk’

GET https://api.contoso.com/products?filter=name ne '"Milk' Example: all
products with the name 'Milk' that also have a price less than 2.55:

GET https://api.contoso.com/products?filter=name eq 'Milk' and price It
2.55 Example: all products that either have the name 'Milk' or have a
price less than 2.55:

GET https://api.contoso.com/products?filter=name eq 'Milk' or price It
2.55 Example: all products that have the name 'Milk' or 'Eggs' and have a
price less than 2.55:

GET https://api.contoso.com/products?filter=(name eq 'Milk' or name eq
'Eggs’) and price It 2.55

=fast Lane

@ GitHub Copilot

To implement the filternng functionality as descnbed in the examples, you can use the System.Ling.Dynamic.Core library. This library allowsyou to
build dynamic LING queries using stnng expressions, which is perfect for implementing a flexible filtenng system.

First, install the System.LingDynamic.Core NuGet package:

Install-Package System.Linq.Dynamic.Core

P R O M P T ‘| : ! Then, modify your Get method inthe ProductsController class to accept a filter query parameter and apply it to the products query:
[HttpGet]

public async Task<ActionResult<IEnumerable<Product>>> Get([FromQuery] strii

RESULT {
IQueryable<Product> query = _productRepository.GetProducts();

if (!string.IsNullOrWhiteSpace(filter))

1
query = query.Where(filter);
¥
return await query.TolListAsync();
¥
4 .3

CH Preview

=fast Lane

PROMPT 12 -
RESULT AFTER /FIX

Here'sthe corrected Get method:

JUNIOR [HttpGet]
DEVELOPER public async Task<ActionResult<IEnumerable<Product>>> Get([FromQuery] string?
{

IQueryable<Product> query = _productRepository.GetProducts();

if (!string.IsNullOrWhiteSpace(filter))
{

}

query = query.AsQueryable().Where(filter);

return await query.TolListAsync();

}

L |

0 -

PROMPT 13 -

ADD DOCKER FILE

SENIOR
DEVELOPER

=fast Lane

Given the fact I'm using .NET 8, and , generate me a Dockerfile
which will create an image out of my application. Use multi staged

build and the smallest, most optimal final base image. Use Linux
Images.

will NET 8 app work with this docker file?

PROMPT 13 -
RESULT

=fast Lane

@ GitHub Copilot

The Dockerfile provided in the previous response isfor a .NET 6 application. If you're using .MET 8, you'll need to update the base images to the NET 8
versions once they're available. As of now, .NET 8 is not yet released, so there are no official NET 8 Docker images.

Here'san example of what the D ockerfile might look like for NET 8:

Stage 1: Build the application
FROM mcr.microsoft.com/dotnet/sdk:8.0 AS build
WORKDIR /source

Copy csproj and restore
COPY *.csproj
RUN dotnet restore

Copy everything else and build the app
COPY .
RUN dotnet publish -c Release -o /app --no-restore

Stage 2: Create the final image

FROM mcr.microsoft.com/dotnet/aspnet:8.0
WORKDIR /app

COPY --from=build /app ./

ENTRYPOINT ["dotnet", "WebApi.dll"]

Preview

=fast Lane

. | need to setup CI-CD pipeline in my Azure DevOps pipelines.
PROMPT 14 Generate YAML azure devops pipeline which will build the code,

AZURE DEVOPS execute unit tests, build an image and push it to container registry.
PIPELINES

@ GitHub Copilot

Here is a basic example of an Azure Pipelines YAML file that builds a .NET application, runs unit tests, builds a Docker image, and pushesit to an Azure
Container Registry:

SEI\“OR trigger:
DEVELOPER - e

variables:
dockerRegistryServiceConnection: 'DockerRegistryServiceConnection'
imageRepository: 'your-image-repository'
containerRegistry: 'your-container-registry.azurecr.io'
dockerfilePath: '$(Build.SourcesDirectory)/Dockerfile’
tag: '$(Build.BuildId)’

stages:
- stage: Build
displayMName: Build and test

- job: Build

displayName: 'Build’
pool:
vmImage: 'ubuntu-latest’
steps:
— task: DotNetCoreCLI@2

e]

=fast Lane

P ROMPT 15— Also i want to be able to use parameters to turn push of the images
ADDING TO on/off when | manually run the pipeline

Pl PELl N E =
You can add parameters to your Azure Pipelines YAML file to control whether to pi

pipeline to add a pushimage parameter:

trigger:
- main

SENIOR
DEVELOPER parameters:

— name: pushImage
displayName: Push Docker Image
type: boolean
default: true

—— e 4 Em R g et s mma —————

tags: $(tag)
- ${{ if eq(parameters.pushImage, true) }}:
- task: Docker@2

inputs:
containerRegistry: $(dockerRegistryServiceConnection) -
repository: $(imageRepository)
command: 'push'’
tags: $(tag)

PROMPT 16 -
UNIT TEST PROJECT

JUNIOR
DEVELOPER

=fast Lane

How to create unit test project in my Visual Studio solution?

How to create unit test project in my Visual Studio solution?

® GitHub Copilot

To create a unit test project in your Visual Studio solution, follow these steps:

1
2.
2)

Mow, you have a new unit test project inyour solution, and it's ready for you to add tests. You can create a new test by right-clicking on your test
project in the Solution Explorer, selecting Add -» New Item, choosing xUnit Test or MSTest Test, and clicking Add.

% How can | run the unit tests from Visual Studio?

QOpen your solution in Visual Studio.
Right-click on the Solution in the Solution Explorer and select Add -> MNew Project.

In the Create a new project dialog, search for xUnit Test Project (.NET Core) or MSTest Test Project (NET Core] depending on your preference.
Select the template and click Mext.

In the Configure your new project dialog, enter a name for your test project. Typically, it's the name of the project being tested followed
by .Tests. Click Create.

Once the test project is created, you need to add a reference to the project you want to test. Right-click on your test project in the Solution
Explorer, select Add -» Reference.

In the Reference Manager dialog, under Projects, select the project you want to test and click OK.

% Can | generate a code coverage repart for my unit tests in Visual Studio?

=fast Lane

PROMPT 1/ - In my unit test file #file:'UnitTest1.cs' generate an initial unit test
for #file:'ProductsController.cs’ Include in instrucions all nuget

ADDING UNIT TESTS packages and proper namespaces

J U N |O R In my unit test file ©* UnitTest1.cs generate an intial unit test for ©* ProductsController.cs

DEVELOPER @ GitHub Copilot

To create an initial unit test for the ProductsController, you'll need to mock the IProductRepository dependency. Here's an example of how you can do
this using Moq and MUnit:

using System.Collections.Generic;
using System.Linq;

using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Moq;

using NUnit.Framework;

using WebApi.Controllers;

using WebApi.Models;

namespace WebApi.Tests

1
public class Tests -

{

private Mock<IProductRepository> _mockRepo;
private ProductsController _controller;

[SetUp]

rithlde vundid Satunl

PROMPT 18 -
ADDITIONAL
UNIT TESTS

JUNIOR
DEVELOPER

=fast Lane

Add unit test which tests filtering by price in #Unittests1.cs

Add unit test wich tests filtering by price in €* UnitTest1.cs

@ GitHub Copilot

To add a unit test that tests filtering by price, you can modify the Get_WhenCalled_Returnsallitemstest to return a list of productswith different prices,
and then filter the products by price in the Get method call. Here's how you can do it

[Test]
public async Task Get_WhenCalledWithPriceFilter_ReturnsFilteredItems()
{
// Arrange
_mockRepo.Setup(repo => repo.GetProducts()).Returns(new List<Product>
{
new Product { Id = 1, Name = "Productl", RegularPrice = 100 },
new Product { Id = 2, Name = "Product2", RegularPrice = 200 },
new Product { Id = 3, Name = "Product3", RegularPrice = 300 }
}.AsQueryable()):
// Act
var result = await _controller.Get("RegularPrice < 250"); -
// Assert

Assert.That(result.Value, Is.TypeOf<List<Product>>());
Assert.That(result.Value.Count, Is.EqualTo(2));
Assert.That(result.Value.All(p => p.RegularPrice < 250));

PROMPT 19 -21 -

UNIT TESTS

JUNIOR
DEVELOPER

Fast Lane

Add unit test which tests creation of a new product in
#file:'UnitTest1.cs’

Add unit test which tests deletion of a product in #file:'UnitTest1.cs’

Add unit test which tests update of an existing product in
#file:'UnitTest1.cs'

Fast Lane

PROMPT 22 — | | o .
| will host this .NET 8 app container in azure app service. Generate
AZURE bicep template for azure resource creation used for hosting this

app. Also provide instructions on how to execute the bicep
INFRASTRUCTURE template against azure in markdown format in a README.md file.

S E N | O R Here is the README.md file:

1will host this .NET 8 app container in azure app service. Generate bicep template for azure resouree creation used for # Azure App Service Deployment
D Ev E L P E R hasting thisapp. Also provide instructions on how to execute the bicep template against azure in markdown format in
a READMEmMd file.
This repository contains a Bicep template for deploying an Azure
@ GitHub Copilot ##t Prerequisites
Here is a basic Bicep template for creating an Azure App Service Plan and an App Service:
param name string = (Eie (Gl
param location string = resourceGroup().location - Bicep CLI
param skuName string = 'F1'
param skuTier string = 'Free' ## Deployment Steps
resource appServicePlan 'Microsoft.Web/serverfarms@2021-02-01' = 1. Login to your Azure account:
name: name < »
location: location
sku: {
name: skuName azlogin

tier: skuTier

1 ¥ 2. Create a resource group: -

resource appService 'Microsoft.Web/sites@2021-02-01' = {

Tame; _namel ti az group create --name --location

ocation: location

properties: {
serverFarmId: appServicePlan.id 3. Deploy the Bicep template:

3
} P01 previeow

HANDS-ON EXERCISES
& CHALLENGES

Let’'s check what we've learned!

CHALLENGE 1

Fast Lane

* Your task is to design and implement an application that

is capable of storing vital information about Users. The
details to be stored include, but are not limited to, the
user's First Name, Last Name, Email, and User id. You will
need to approach this task by utilizing Entity Framework
Core and the latest version of Visual Studio, which is
Visual Studio 2022.

In the process, you will need to create a database model,
set up a database context, and configure Entity
Framework in the application's startup. The application
should be capable of performing CRUD (Create, Read,
Update, Delete) operations on the user's data. Remember
to ensure data integrity and security when handling the
user's information. I

Fast Lane

CHALLENGE 2 * Your task in this challenge is to enhance your local
development experience by setting up a local database

and utilizing the Entity Framework (EF) Core Seed
method. This task will help you simulate a real-world
scenario where you would interact with data stored in a
local database rather than an in-memory database. The
EF Core Seed method should be used to populate your
local database with initial data.

The goal here is to migrate from using an in-memory
database and mocked objects to a more realistic setup
featuring a local database and actual data objects
generated via the EF Core Seed method. This shift will

_ provide da more practical understanding of how your -

application interacts with stored data.

=fast Lane

 Your mission in this challenge is to implement a Users
CHALLENGE 3 Controller for your REST APl endpoint. This controller will
act as the intermediary between the User model and the
corresponding views, handling incoming browser
requests, retrieving necessary model data, and returning
appropriate responses.

To be more specific, your Users Controller should be
capable of managing all interactions with User data. This
includes the implementation of Create, Read, Update,
and Delete (CRUD) operations, which are fundamental in
any data-driven application.

Fast Lane

* Your objective in this challenge is to extend the User
CHALLENGE 4 object v{/ith additional prope?ties as per the customer's
requirements. The customer has provided a detailed story
outlining the specific properties they want to track for
their users, and the types of users they anticipate
interacting with.

By incorporating these properties, you will be adding a
new level of depth and complexity to your User object.
This detailed information will facilitate a richer, more
personalized user experience, and enable more effective
user management.

The properties to be added to the User object include but
are not limited to: User Name, User Profile, User

-/ Category, User Sub-category, User Interaction History, P

User Images, User Videos, UID, Account Status, User
Preferences, User Variants, User Feedback and Ratings,
Connected Users, and SEO Fields.

Fast Lane

* Your task for this challenge is to implement a unit test for
CHALLENGE 5 the User Controller in your application. Unit tests are
critical to ensure the reliability and functionality of your
code. They help you identify and fix bugs, prevent future
errors, and improve the overall design of your code.

* In this case, you're required to design a unit test that
verifies the functionality of the User Controller. This
includes creating tests for all of the CRUD operations
(Create, Read, Update, Delete) that the User Controller
performs. Ensure that the tests cover all possible edge
cases and unexpected user inputs.

CHALLENGE 6

Fast Lane

 The task for this challenge is to create a Docker image for

your application. Docker is a platform that allows
developers to package applications into containers —
standardized executable components that combine
application source code with all the operating system
(OS) libraries and dependencies required to run the code
IN any environment.

Creating a Docker image for your application ensures
that it can run consistently on any machine that has
Docker installed, regardless of the underlying operating
system. This is crucial for simplifying deployment and
scaling of your application.

APPLICATION IN VISUAL
STUDIO CODE

=fast Lane

TECH STACK OVERVIEW

* Visual Studio Code: a popular and versatile code editor with a wide range of extensions for
various languages and frameworks. VS Code’s rich ecosystem of extensions allows developers
to customize their environment for various languages and runtimes (e.g., Python, Java, C++).

* Flask: a lightweight Python web framework for building web applications quickly and easily.
Flask provides sensible defaults and conventions for getting started quickly, allowing
developers to choose their tools and libraries.

 pytest-flask is an extension for the pytest test runner specifically designed for testing Flask
applications. It simplifies testing and development by providing useful tools. Features include
fixtures for creating Flask apps, test clients, and CLI runners. The extension integrates
seamlessly with Flask, allowing developers to write effective tests using the pytest framework.

» Materialize is a responsive front-end framework based on Google's Material

Design guidelines. It combines the principles of Material Design with the flexibility of CSS to
create a visually attractive and easy-to-use framework.

PROMPT 1

JUNIOR
DEVELOPER

=fast Lane

| need to implement a simple web application using python
programming language version 3.11.4. First tell me the steps i
need to do to use python virtual environment for development.
Include what commands are needed to be exectuted for package
instalation etc. | would like Root directory of my app would be
C\Demos\PyWebApp

Fast Lane

PROMPT 1 - RESULT

4. Activate the virtual environment. On Windows, the

& GitHub Copilot

command is:
Here are the steps to set up a Python virtual environment for

your web application:))
.\env\Scripts\activate

1. Open the terminal in Visual Studio Code.

2. Navigate to your root directory using the 'ed command: 5. Now that the virtual environment is activated, you can

install packages using pip . For example, to install Flask (a

cd C:\Demos\PyWebApp lightweight web application framework), you would use:

pip install flask

3. Create a new virtual environment using the venv module
in Python:
6. You can verify the installed packages with:

python -m venv env

pip freeze

=fast Lane

PROMPT 2 Now i need to initialize this folder as local git repository so i can

track changes against my code base. Can you give me step by
JUNIOR
DEVELOPER

step instructions on how to do it using VS Code?

Fast Lane

& GitHub Copilot

Sure, here are the steps to initialize your folder as a local Git
repository using Visual Studio Code:

1. Open the terminal in Visual Studio Code.

P R O M P-l- 2 2. Navigate to your root directory using the e¢d command:
R ES U LT cd C:\Demos\PyWebApp

3. Initialize a new Git repository with the git init

command:

git init

4. Now, your folder is a Git repository. You can start tracking

=fast Lane

| need simple hellp world page with simple menu for navigation.
PROMPT 3 Can you reccommend me which libraries and frameworks to use

and give me detailed step by step instructions on how to setup
JUNIOR
DEVELOPER

and run the project in Visual Studio Code.

Fast Lane

& GitHub Copilot 4. Define a route for the home page (/") of your web

application:
For a simple web application in Python, Flask is a great choice.

It's a lightweight and easy-to-use framework that's perfect for

@app.route(/")
def home():
return "Hello, World!"

small projects. Here's how you can set up a simple "Hello
World" page with a navigation menu:

1. If you haven't already, install Flask in your virtual
environment: 5. Now, you can run your application. In the terminal, set the
FLASK_APP environment variable to your application:
pip install flask

RESULT-

2. Create a new file in your project directory named 'app.py
and open it in VS Code. 6. Then, run the application with the flask run command:

3.In app.py. import Flask and create a new Flask web

server from the Flask module: flask run

from flask import Flask 7. Open a web browser and go to http://127.8.0.1:5000/
app = Flask(__name__) to see your application

=fast Lane

I've noticed a large number of git changes originating from .env
PROMPT 4 folder of my python virtual environment. Can you generate a
.gitignore file so that those changes are excluded from source

control?
JUNIOR
DEVELOPER

PROMPT 4 -
RESULT

& GitHub Copilot
Used 1 reference >

Sure, you can create a .gitignore file in the root directory of
your project to ignore the env folder. Here's how you can do
it:

1. In the root directory of your project, create a new file
named .gitignore.

2. Open the .gitignore file in VS Code.

3. Add the following lines to the .gitignore file:

Python virtual environment
env/

4. Save and close the .gitignore file.

Now, Git will ignore the ‘env folder when tracking changes.

You can add more directories or files to the .gitignore file as

needed. Each new line is a new rule. For example, to ignore all

Fast Lane

=fast Lane

| need to implement a display table for list of products. I've
PROMPT S received this from my C# developers on how the object is going

to look like. Can you use this C# class as a reference and create a

mock json file which will be served in application, so i can use it as

SENIOR a fake endpoint for future integration? Here's C# Product class:
DEVELOPER

=fast Lane

public class Product

publicint Id { get; set; }
public string Name { get; set; }
public string Description { get; set; }
public string Category { get; set; }
public string SubCategory { get; set; }
public decimal RegularPrice { get; set; }
public decimal? SalePrice { get; set; }
public string ImageUrl { get; set; }
P R O M P T 5 — public string VideoUrl { get; set; }
public string SKU { get; set; }
C O N T I N U E D public string StockStatus { get; set; }
public decimal Weight { get; set; }
public string Dimensions { get; set; }
public string Variants { get; set; }
public string Reviews { get; set; }
public string Ratings { get; set; }
public string RelatedProducts { get; set; }
public string MetaTitle { get; set; }
public string MetaDescription { get; set; }

public string Keywords { get; set; }

public string ProductType { get; set; }

PROMPT 5 -
RESULT

Fast Lane

& GitHub Copilot
Used 1 reference »
Sure, based on the C# class you provided, you can create a mock

JSON file that represents a list of products. Here's an example of
how you can structure the JSON file:

"Id": 1,

"Name": "Product 1",

"Description”: "This is product

"Category": "Categoryl",

"SubCategory”: "SubCategoryl”, You can save this JSON in a file named products.json in your

"RegularpPrice”: 100.0, project directory. Then, you can serve this file as a static file in

“SalePrice": 80.0, your Flask application. Here's how you can do it:

"Tmaoalln1®™: "h++n: /[favamnla ~am

1. In ‘app.py, import send_from_directory from Flask:

from flask import » send_from_directory

2. Define a route for the products endpoint that sends the

products.json file:

@app.route('/products"')
def products():
return send_from_directory('products.json')

Now, when you go to http://127.0.0.1:5880/products in your

=fast Lane

® When | run application | get the following error: "TypeError:
PROMPT 6 send_from_directory() missing 1 required positional argument:
Ipathl n

JUNIOR
DEVELOPER

PROMPT 6
RESULT

& GitHub Copilot
Used 1 reference >

The send_from_directory function requires two arguments: the directory

name and the filename. In your case, it seems like you're trying to serve the
products.json file from the same directory as your app.py file. Here's how

you can fix the error:
Replace the /products route in your app.py file with the following code:
@app.route('/products’)

def products():
return send_from_directory('.', 'products.json’)

In this code, *." represents the current directory (i.e., the directory where

app.py is located), and *products.json' is the name of the file you want to

SErve.

Fast Lane

PROMPT 7

SENIOR
DEVELOPER

=fast Lane

Generate a method which will connect to url and fetch the list of
products. For initial url value take http://localhost:5000/products.
Also convert json body to a python list of products and generate
python class for product. Here is JSON example of the products:

PROMPT 7 -
RESULT

& GitHub Copilot

Used 1 reference >

Fast Lane

You can use the requests library in Python to fetch the list of products from

the URL. Then, you can use the json library to convert the JSON response to a

Python list of dictionaries. Here's how you can do it:

First, let's define the Product class:

class Product:

def _ init_ (self, Id, Name, Description, Category, Sut

self.Id = Id

self.Name = Name
self.Description = Description
self.Category = Category
self.subCategory = SubCategory
self.RegularPrice = RegularPrice

.SalePrice = SalePrice

import requests

def fetch_products(url):

response = requests.get(url)
product_dicts = response.json()

products = []

for product_dict in product_dicts:
product = Product(**product_dict)
products.append(product)

return products

You can call this function with the URL of the products endpoint to get a list of

Product objects:

products = fetch_products(http://localhost:5008/products"’)

Fast Lane

/fix Import "requests” could not be resolved

P R O M PT 8 from source
F | X E R R O RS To solve the problem, you need to install the requests package.

pip install requests

View in Chat O

PROMPT 9

SENIOR
DEVELOPER

=fast Lane

On my home page, | need to display a table of products. By using
a list of products fetched by method ,fetch_products” to generate
html table containing Id, Name, Description and RegularPrice
columns. Can you add the code directly in my app.py?

PROMPT 9 -
RESULT

& GitHub Copilot

Used 1 reference 2

Sure, you can use Flask's built-in templating engine, Jinja2, to generate
the HTML table. First, you need to import render_template from Flask
and modify the '/ route to render a template. Then, you need to create

a new template file in the 'templates directory.

Here's how you can modify your app.py file:

from flask import Flask, render_template '
th>Id</th
th>Name</th

import requests

th>Description</th
th>RegularPrice</th

app = Flask(__name__)

tr
{% for product in products %}
tr

td>{{ product.Id }}

td>{{ product.Name }}</td

td>{{ product.Description }}</td

def fetch_products(url): td>{{ product.RegularPrice }}</td

response = requests.get(url) e
{% endfor %}

table

product_dicts = response.json()

products = []

for product_dict in product_dicts:
product = Product(**product_dict)
products.append(product)

return products

@app.route('/")

def home():
products = fetch_products('http://localhost:500€
return render_template('home.html’, products=prc

Fast Lane

=fast Lane

PROMPT 10 | need to display details for each of the products in the list. Can

you generate additional page ,/details” which will receive product
JUNIOR
DEVELOPER

id from query string.

PROMPT 10 -
RESULT

& GitHub Copilot
Used 1 reference >
Sure, you can create a new route /details that takes a product ID

from the query string and displays the details of the corresponding
product. Here's how you can modify your app.py file:

Fast Lane

from flask import ,» render_template, request

import

@app.route(' /details"’)
def details():
product_id = request.args.get('id’

products = fetch_products('http://
product = next((product for produc
return render_template('details.ht

In this code, request.args.get('id') gets the product ID from the
query string. The next function is used to find the product with the
given ID in the products list. If no such product is found, next

returns None .

Then, create a new file named |details.html in the templates

directory with the following content:

1>{{ product.Name }}</h1l
{{ product.Description }}</p
Regular Price: {{ product.RegularPrice }}</p

In this template, {{ product.Name }}, {{ product.Description }},
and {{ product.RegularPrice }} are Jinja2 expressions that output

the value of the corresponding attribute of the product.

Now, you can access the details of a product by visiting ' /details?id=

<product_id>, where <product_id> is the ID of the product.

PROMPT 11

SENIOR
DEVELOPER

=fast Lane

| need to add some proffesional looking desing. Can you give me
step by step instructions on how to include Materialize framework
in my python app and make my home and details template look
more professional.

Fast Lane

PROMPT 11 - RESULT

3. Customize your home template: For your home template, you
& GitHub Copilot

can use Materialize's grid system to display your products in a div class="card"

Used 1 reference > grid layout. Here's an example: div class="card-image"

ime ="rr - 1w
Sure, here are the steps to include the Materialize framework in your s ST T SE s T
span class="card-title">{{ product

Python Flask application and make your templates look more ss="row"
professional: or product in products %}

class="col s12 me 14"
1. Include Materialize CSS and JS in your templates: You need to di

v class="card-content"

o ellrEseT el p>{{ product.description }}</p

include Materialize CSS and JS files in your HTML templates. You . " . .
div class="card-image
ng src="{{ product.image_url }}"

an class="card-title">{{ product.name }}

can do this by adding the following lines in the <head> section of
your HTML files:

link rel="stylesheet” href="https://cdnjs.cloudfla 5. Include Materialize initialization code: Some Materialize

script src="https://cdnjs.cloudflare.com/ajax/libs

iv class="card-content"
p>{{ product.description }}</p

components require initialization. You can do this by adding the
following script at the end of your HTML files:

2. Use Materialize classes in your HTML: Materialize provides a lot class="card-action"
of classes that you can use to style your HTML elements. For a href="/details?id={{ product.id }}">View
example, to make a button look more professional, you can use i
the 'btn class:

script
M.AutoInit();
cript

PROMPT 12

JUNIOR
DEVELOPER

=fast Lane

| need to implement unit tests for this python web app. Can you
recommend me best framework for my case (using Flask) and also
provide step by step instructions on how to setup project, which
packages to install etc.

PROMPT 12 -
RESULT

& GitHub Copilot
Used 1 reference >

Sure, for testing Flask applications, the Flask extension
pytest-flask is a good choice. It's a plugin for pytest that

provides a bunch of useful tools to make testing Flask
applications easier.

Here are the steps to set up your project for testing:

1. Install the necessary packages: You need to install
pytest, pytest-flask, and requests-mock for

mocking HTTP requests. You can install them using pip:

pip install pytest pytest-flask requests-moc¢

2. Create a test file: Create a new Python file in your
project directory for your tests. You can name it
test_app.py.

3. Import the necessary modules: At the top of your test

file, import the necessary modules:

import py

import r ts_mock

from flask import url_for
from app import app

Fast Lane

4. Create a pytest fixture for your app: Pytest fixtures
are functions that are run before each test function to
which it is applied. You can use a fixture to initialize your
Flask app:

@pytest.fixture
def client():
app.config['TESTING'] = True
with app.test_client() as client:
yield client

5. Write your tests: Now you can write your tests. Here's

an example of a test for the /details route:

def test_details(client, requests_mock):
mock_response = [

{"Id": 1, "Name": "Product 1", "Dest¢

{"Id": 2, "Name": "Product 2", "Dest
]
requests_mock.get("http://localhost:560¢
response = client.get(url_for('details’,
assert response.status_code == 200
assert b"Product 1" in response.data

PROMPT 13 -
FIX ERRORS

JUNIOR
DEVELOPER

=fast Lane

When i run tests with pytest i get following error :

"E RuntimekError: Working outside of application context. This
typically means that you attempted to use functionality that
needed E the current application. To solve this, set up an
application context E with app.app_context(). See the
documentation for more information."

Can you provide code changes in form of entire file? Provide
concrete code for my example without needing to change or
replace anything.

PROMPT 13 -
RESULT

Fast Lane

Sure, the error you're seeing is because the url_for function is

being called outside of an application context. This function needs

the application context to generate URLs. You can solve this by

creating an application context in your test. Here is the modified
code:

import pytest

import

from flask import url_for
from app import app

@pytest.fixture
def client():
app.config['TESTING'] = True
with app.app_context():
with app.test_client() as client:
yield client

def test detailsf(client. reauests mock):

=fast Lane

PROMPT 14 Now | get error:

RuntimeError: Unable to build URLs outside an active request
without 'SERVER_NAME' configured. Also configure

JUNIOR 'APPLICATION_ROOT" and 'PREFERRED_URL_SCHEME'" as needed.
DEVELOPER

PROMPT 14
RESULT

Fast Lane

This error occurs because Flask's url_for function needs to know
the server name, application root, and URL scheme to generate URLs
outside of a request context. You can solve this by setting these
configuration values in your test setup. Here's how you can modify
your code:

import pytest

import

from flask import url_for
from app import app

@pytest.fixture

def client():
app.config['TESTING'] = True
app.config['SERVER_NAME'] = 'localhost:5000"
app.config['APPLICATION_ROOT'] = '/
app.config['PREFERRED _URL_SCHEME'] = 'http’

with app.app_context():

=fast Lane

PROMPT 15 - Now i get following error:
- "E TypeError: Product.init() missing 18 required positional
IX ERRORS AGAIN arguments: 'Category’, 'SubCategory’, 'RegularPrice’,
NQO 2 'SalePrice', 'ImageUrl’, 'VideoUrl', 'SKU', 'StockStatus',
'Weight', 'Dimensions’, 'Variants', 'Reviews', 'Ratings’,
JUNIOR 'RelatedProducts’, ‘MetaTitle', ‘MetaDescription’, 'Keywords',
@ DEVELOPER and 'ProductType"

Fast Lane

The error message indicates that the Product class requires 18
arguments for initialization, but they are not provided in the
mock_response . You need to include these fields in your

mock_response . Here's how you can modify your code:

test_details(client, requests_mock):

PROMPT 15 - S
RESULT T

"Description": "Description

"Category": "Category 1",
"SubCategory": "SubCategory
"RegularPrice™: 100.0,

"SalePrice": 90.90,

"ImageUrl": "http://example.com/imagel
"VideoUrl": "http://example.com/videol

MWeprnall | Mepriaa N

PROMPT 16

SENIOR
DEVELOPER

=fast Lane

#file:home.html #file:app.py Add a refresh button to my
home page. Html needs to be defined so it uses
Materialized framework. Also click action needs to initiate
refresh of products list. Refresh needs to be only for the list,
not for the entire page so use asynchronous method. Also
add a loader which will first wait for 2 seconds and then
fade in the refreshed list. Keep fetching product from json
file. Add custom classes to html elemets to avoid similarity

with public code.

PROMPT 16 RESULT

Used 1 reference >

Plan

1

. Add a button for refreshing the products list in the home.html

file. This button will have an onclick event that triggers a

JavaScript function to refresh the products.

. Define the JavaScript function that will be triggered when the

refresh button is clicked. This function will use the fetch API to
make an asynchronous GET request to the '/products’ endpoint

of the Flask app.

. In the fetch_products function in app.py, add a delay of 2

seconds before returning the products list to simulate the

loading time.

. In the JavaScript function, add a loader that will be displayed

while the products are being fetched. After the products are
fetched, the loader will be hidden and the new products list will

be displayed.

. Use Materialize CSS classes for the refresh button and the

Fast Lane

home.html

button class="btn waves-effect waves-light" id="r
i class="material-icons right">refresh</i
button
div id="loader" class="preloader-wrapper big acti
div class="spinner-layer spinner-blue-only"
div class="circle-clipper left"
div class="circle" div
div><div class="gap-patch™
div class="circle" div
div><div class="circle-clipper right"
div class="circle" div
div

¢ function refreshProducts() {
document.getElementById('loader').style.di

PROMPT 17

SENIOR
DEVELOPER

=fast Lane

#file:app.py Add logging to my application. Implement
logging so that i can switch concrete logging destination
afterwards. For development environment logg to console
output. Generate me entire app.py code properly merged.

PROMPT 17 RESULT

Copilot
Used 1 reference >

Sure, | can help you add logging to your application. We will use
Python's built-in logging module. Here's how you can do it:

import logging

from flask import Flask, send_from_directory, rend
import requests

import time

from Product import Product

logging.basicConfig(level=1logging.DEBUG)
logger = logging.getLogger(__name_)

app = Flask(__name_)

Fast Lane

@app.route('/products’)

def products():
logger.info('Products route accessed')
time.sleep(2)
return send_from_directory('.', 'products.json

@app.route('/details")

def details():
logger.info('Details route accessed')
product_id = request.args.get('id")
products = fetch_products('http://localhost:5€
product = next((product for product in product
return render_template('details.html’, product

def fetch_products(url):

logger.info(f'Fetching products from {url}')
response = requests.get(url)

product_dicts = response.json()

PROMPT 18

SENIOR
DEVELOPER

=fast Lane

Can you add additional Test field to Product.py named
JestProperty” of type string and also add corrections to all
places, add properties to mocked file

#file:products.json, add properties to python class file:
#file:Product.py, add additional properties to test file:
#file:test_app.py and also for display in html templates:
#file:home.html and #file:details.html

Fast Lane

PROMPT 18 RESULT ———

def test_details(client, requests_mock):

mock_response = [

”Id”: 1,

&3 GitHub Copilot
"Name": "Product 1",

Used 1 reference ?
Sure, | can help you add the "TestProperty" field to your Product
class and update all the relevant files. Here's how you can do it:

"ProductType"”: "Type 1",
"TestProperty": "Test value 1"

1. Update the Product class in [Product.py:

4. Display the "TestProperty" field in home.html and

class Product: details.html:

def __init__ (self, Id, Name, Description, Cate
self.Id = Id

In home.html :

div-class="card-content”
p>{{ product.Description }}</p
p>{{ product.TestProperty }}</p
div

2. Add the "TestProperty" field to the product data in

products.json:

"Id": 1) In details.html:

"Name"™: "Product 1",
div class="card-content™

p>{{ product.Description }}</p
p>{{ product.TestProperty }}</p
:j iv

"ProductType™: "Typel®,
"TestProperty": "Test value 1"

HANDS-ON EXERCISES
& CHALLENGES

Let’'s check what we've learned!

CHALLENGE 1

=fast Lane

Your task in this challenge is to set up a local virtual Python
environment for web application development. A virtual
environment allows you to isolate your Python project and
it's dependencies from other projects, ensuring that each
project has it's own set of dependencies that won't disrupt
or conflict with each other.

This setup is crucial for maintaining clean and organized
Python projects, especially when these projects have
different dependencies and versions. It also makes your
projects more portable and easier to share with others.

CHALLENGE 2

=fast Lane

Your task in this challenge is to create a simple "Hello
World" application using Flask. Flask is a popular web
framework in Python used for developing web applications.
A "Hello World" application is often the first program
written when learning a new language or framework,
serving as a simple test and introduction.

CHALLENGE 3

=fast Lane

Your task in this challenge is to create a list of mocked
objects for display based on the given JSON data. Mock
objects are simulated objects that mimic the behavior of
real objects in controlled ways. They are useful for testing
and for situations where creating real objects is impractical
or impossible.

In this case, you're given a JSON data structure of product
objects, and your task is to create corresponding Python
objects.

JSON example can be found in Notes section below

CHALLENGE 4

=fast Lane

Your task in this challenge is to use the product list from
Challenge 3 on the home page of your application to
display the products. You'll need to integrate the list of

Product objects into your Flask application and create a way
to display them on the home page.

CHALLENGE &

=fast Lane

Your task in this challenge is to add example unit tests to
your project. Unit tests are an essential part of software
development, designed to verify that individual units of
source code (e.g., functions or methods) are working
correctly.

CHALLENGE 6

=fast Lane

Your task in this challenge is to create an Azure DevOps
pipeline for your Flask application. Azure DevOps is a
Microsoft product that provides version control, reporting,
requirements management, project management,
automated builds, testing and release capabilities. It helps
in automating the software delivery process and provides
continuous integration and delivery capabilities.

